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Abstract—This paper studies the coverage probability of the
low Earth orbit (LEO) satellite satellite communication systems
with a directional beamforming. The larger beamwidth of the
satellite increases the beam coverage, but the network inter-
ference increases. On the other hand, the smaller beamwidth
reduces the beam coverage, but the network interference be-
comes smaller and the desired power can be improved. Thus,
the optimal beamwidth control is necessary to maximize the
performance. To address it, we model the satellite networks
with Poisson point process and analyze the coverage probability
as a function of the beamwidth with stochastic geometry. With
some numerical examples, we investigate how various system
parameters such as altitude and satellite density affect on the
optimal beamwidth and demonstrate that the optimal control
of the beamwidth of the satellites can maximize the coverage
probability.

Index Terms—Satellite systems, coverage probability, stochas-
tic geometry.

I. INTRODUCTION

Recently, the low earth orbit (LEO) satellites have drawn
much attention as a promising solution to provide the wireless
global connectivity. The spatial modeling of satellite com-
munication networks is of great importance for their design
and performance analysis. The conventional model to study
the performances of satellite networks is regularly structured
deterministic model, where all satellites are evenly spaced
and have the same period and inclination [1]. However,
this model requires the extensive system level-simulations
and makes hard to understand the fundamentals of satellite
communication systems with a tractable form.

The stochastic geometry is an useful mathematical tool for
studying the performance of the networks and it is widely
used to discover the fundamental limits of diverse networks
such as cellular network [2], [3] and decentralized network
[4], [5]. Recently, there have been also some trials to under-
stand the fundamentals of the satellite communication systems
with stochastic geometry [6]–[12]. The coverage and outage
probabilities of LEO satellite networks were analyzed based
on a binomial point process(BPP) model over Shadowed-
Rician fading channel [6], [7]. However, these works did not
consider the network interferences. The coverage probability

and the average rate of LEO satellite networks were investi-
gated based on BPP over Rayleigh fading [8]. The coverage
probability was studied with a Poisson point process(PPP)
over Nakagami-m fading channel, but the beamwidth control
issue was not studied [9]. The coverage probability and
average data rate of LEO network were analyzed with a
non-homogeneous PPP model [10] and the optimal altitude
of PPP based dense satellite constellations to maximize the
coverage probability was investigated [11]. The algorithm to
calculate distance of different point sets was proposed and
the distance between BPP and Fibonacci lattice/orbit models
was compared [12]. Obviously, none of the above works have
successfully addressed the beamwidth control of directional
beamforming, which is the main focus of this paper.

When the satellites perform a directional beamforming, the
larger beamwidth of the satellite increases the beam coverage,
but the network interference increases. On the other hand,
the smaller beamwidth reduces the beam coverage, but the
network interference becomes smaller and the desired power
can be improved. Therefore, the optimal beamwidth control
is required to properly balance the network interference and
the beam coverage. To address it, we analyze the coverage
probability of the satellite communication networks with a
stochastic geometry and investigates the optimal beamwidth.
With numerical examples, we demonstrate that the optimal
control of the beamwidth of the satellites can maximize
the coverage probability and investigate how various system
parameters such as channel parameters and network topology
affect on the coverage probability.

II. SYSTEM MODEL

We consider the downlink satellite communication systems
performing a directional beamforming, where the satellites are
uniformly distributed over the spherical surface of altitude H
[km] from the Earth, which is depicted in Fig. 1. The Earth is
assumed as a sphere of a radius Re(∼ 6,371 [km]) centered at
the origin o � (0, 0, 0) ∈ R3 in the 3D Cartesian coordinate
system. We model the satellites as a homogeneous PPP with
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Fig. 1: System model

intensity λ and denote their location set as Φ = {xl}, where
xl ∈ R3 indicates the location of l-th satellite.

We focus on the downlink performance of a reference user
which is located at the position o′ � (0, 0, Re) on the surface
of the Earth and equipped with an omni-directional single
antenna of which gain is normalized to one. We define the
surface area of spherical dome (cap) above the horizon of the
reference user as the satellite-visible region and denote it as
SV. Note that the reference user can only see the satellites
in the satellite-visible region. The user is associated with the
nearest satellite among the satellites covering the user with
the beam in the satellite-visible region. If there is no satellite
that can serve the user with the beam, the user cannot be
served from the satellites. Let us denote the location set of
satellites in the satellite-visible region as ΦV and the set of
satellites which can cover the user with the beam (referred to
beam coverage satellites) as ΦM(⊂ ΦV).

We denote the location of the serving satellite as x0 ∈ R3.
Then, the distance from the reference user to the serving satel-
lite can be represented as R0 = ‖x0−o′‖, where H ≤ R0 ≤
rM(ϕ), where rM(ϕ) is the maximum distance from the user
to the serving satellite. rM(ϕ) can be represented by rM(ϕ) =
(Re+H) cos ϕ

2 −
√
(Re +H)2 cos2 ϕ

2 − (2ReH +H2). This
solution is obtained by solving the cosine rule equation
R2

e = r2M(ϕ) + (Re + H)2 − 2rM(ϕ)(Re + H) cos(ϕ/2).
We note that rM(ϕ) increases as ϕ increases. For a given
distance R0 = r, the surface area of spherical cap can
be represented by S(r) = π(Re + H)(r2 − H2)/Re and
the zenith angle in Fig. 1 can be represented by φ(r) =

arccos
(
1− r2−H2

2Re(Re+H)

)
. The number of satellites in S(r)

follows the Poisson distribution, so it can be represented from
the void probability as P [N(S(r)) = k] = (λS(r))k

k! e−λS(r),
where k = {0, 1, · · · ,∞}.

The satellites perform a directional beamforming which
radiates an ideal conical beam of beamwidth ϕ(> 0) towards
the center of the Earth. Thus, the transmit antenna beam gain
can be represented as

G(ϕ)=

{
min

{
Gmax,

1−cos(ϕmax/2)
1−cos(ϕ/2)

}
for |ϕ|≤ϕmax

0 otherwise,
(1)

where ϕmax = arccos
(

H2+2HRe−R2
e

(Re+H)2

)
represents the maxi-

mum beamwidth to cover the Earth and Gmax represents the
maximum beam gain. Note that the antenna gain is normalized

as one when ϕ = ϕmax. As the beamwidth decreases, the
transmit antenna gain increases but is saturated to Gmax.

We consider a simplified LoS/NLoS transmission model,
where LoS and NLoS transmission occurs with pathloss ex-
ponent αL and αN when R ≤ rLN and R > rLN, respectively.
Then, the pathloss gain can be expressed as

L(R) =

{
L0R

−αL , for R ≤ rLN,
L0R

−αN , for R > rLN,
(2)

or, equivalently as

L(R) =

{
L0R

−αL , for φ(R) ≤ φLN,
L0R

−αN , for φ(R) > φLN,
(3)

where φLN � φ(rLN) = arccos
(

R2
e+(Re+H)2−r2LN

2Re(Re+H)

)
and

L0 = (c/(4πfc))
2, where c is the speed of light and fc

is the carrier frequency. Note that φLN can be any value
within [0, φmax(= arccos (Re/(Re +H)))] (rad) and it is de-
termined by the surrounding environment of the user such as a
big mountain. The satellites in the satellite-visible region can
be categorized into two groups: LoS and NLoS satellites. Let
us denote the location sets of LoS and NLoS satellites in the
satellite-visible region as ΦL and ΦN = ΦV\ΦL, respectively.
We also denote the location sets of beam coverage satellites
serving the user via LoS and NLoS transmission as ΦM,L and
ΦM,N, respectively, where ΦM = ΦM,L ∪ ΦM,N.

We consider the Nakagami-m fading as the small scale
fading channel model for the satellites [9], [10]. The small-
scale fading channels for LoS and NLoS links follow the
independent Nakagami-m fading distributions with different
fading parameters mL and mN. The channel power gain
distribution is represented as

f|h|2(x) =
m

mζ

ζ

Γ(mζ)
xmζ−1e−mζx, x ≥ 0, ζ = {L,N}, (4)

where Γ(t) =
∫∞
0

xt−1e−xdx is the gamma function. We
assume that both mL and mN are positive integers for
analytical tractability [13].

When the user is associated with the nearest satellite
among the beam coverage satellites, its received signal-to-
interference-plus-noise ratio (SINR) can be expressed as

SINR =
G(ϕ)P |h0|2L(R0)

N0W + I
, (5)

where W is the system bandwidth, N0 is the noise power
spectral density, and I represents the aggregate interference
given by

I =
∑

l>0:xl∈ΦM\x0

G(ϕ)P |hl|2L(Rl), (6)

where |h0|2 and |hl|2 represent the channel power gains of
desired link and l-th interfering link, respectively, and Rl =
‖xl − o′‖ represent the distance to l-th interfering satellite
located at xl.
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III. COVERAGE PROBABILITY ANALYSIS

In this section, we analyze the coverage probability of the
reference user. Recall that the typical user can be served from
the satellite only if there exists at least one satellite in the
satellite-visible region and the typical user is within the beam
coverage of satellite. Therefore, let us denote the event that
there exists at least one satellite in the satellite-visible region
as EV and the event that the typical user is located within
the beam coverage of the closest satellite as EM. Then, the
coverage probability which is defined as the probability that
the received SINR is larger than a pre-determined target SINR
threshold can be expressed as

Pc(τ) = P [SINR ≥ τ |EV, EM]P [EV, EM] . (7)

Since the typical user can be served only if there exists at least
one satellite in S(rM(ϕ)), P [EV, EM] can be represented as
PV,M = 1− e−λπK(r2M(ϕ)−H2), where K = (Re +H)/Re.

A. Association Probability & Statistical Distance Distribution

We derive some statistics required to analyze the coverage
probability. Depending on the relationship between rLN and
rM(ϕ), we can consider two different scenarios: 1) rLN ≤
rM(ϕ) and 2) rLN > rM(ϕ).

1) Scenario 1: rM(ϕ) ≥ rLN: Conditioned on the events
EV and EM, the association probabilities to the LoS satellite
and NLoS satellite are given as the following lemma.

Lemma 1: When rM(ϕ) ≥ rLN, conditioned on that there
exists at least one satellite in the satellite-visible region and
the user is located within the satellite beam coverage, the
probability to be associated with the LoS satellite is given by

AM,L =
1− e−λπK(r2LN−H2)

1− e−λπK(r2M(ϕ)−H2)
, (8)

and that with the NLoS satellite is given by

AM,N =
e−λπK(r2LN−H2) − e−λπK(r2M(ϕ)−H2)

1− e−λπK(r2M(ϕ)−H2)
. (9)

Proof: We omit the proof due to the limited space.
Lemma 2: When rM(ϕ) ≥ rLN, conditioned on that there

exists at least one satellite in satellite-visible region and the
user is located within the beam coverage of LoS satellite, the
distance distribution to the serving satellite is given by

fM,L
R0

(r) =
1

AM,L

2λπKre−λπK(r2−H2)

1− e−λπK(r2M(ϕ)−H2)
, (10)

where K = (Re + H)/Re and H ≤ r ≤ rLN. Similarly,
conditioned on that there exists at least one satellite in
satellite-visible region and the typical user is located within
the beam coverage of NLoS satellite, the distance distribution
to the serving satellite is given by

fM,N
R0

(r) =
1

AM,N

2λπKre−λπK(r2−H2)

1− e−λπK(r2M(ϕ)−H2)
, (11)

where rLN ≤ r ≤ rM(ϕ).
Proof: We omit the proof due to the limited space.

2) Scenario 2: rM(ϕ) < rLN: When rM(ϕ) < rLN, the
typical user is always located within the beam coverage of
LoS satellite only.

Lemma 3: When rM(ϕ) < rLN, conditioned on that there
exists at least one satellite in the satellite-visible region and
the typical user is located within the beam coverage of the
satellite, the probability to be associated with the LoS satellite
is given by AM,L = 1 and that with NLoS satellite is given
by AM,N = 0.

Proof: The proof of this lemma is trivial.
Lemma 4: When rM(ϕ) < rLN, conditioned on that there

exists at least one satellite in satellite-visible region and the
typical user is located within the beam coverage of the LoS
satellite, the distance distribution to the serving satellite is
given by

gM,L
R0

(r) =
2λπKre−λπK(r2−H2)

1− e−λπK(r2M(ϕ)−H2)
, (12)

where K = (Re +H)/Re and H ≤ r ≤ rM(ϕ).
Proof: We omit the proof due to the limited space.

B. Analysis of Coverage Probability

Let us define the events that the user is served from the
LoS satellite and NLoS satellite as EL and EN, respectively.
Then, the coverage probability in (7) can be re-written by

Pc(τ) = (P [SINR≥τ |EL, EV, EM]P [EL|EV, EM]

+P [SINR≥τ |EN, EV, EM]P [EN|EV, EM])PV,M (13)

=
(
PM,L
c (τ)AM,L + PM,N

c (τ)AM,N

)
PV,M. (14)

1) Scenario 1: rM(ϕ) ≥ rLN: If H ≤ r ≤ rLN, then
the reference user can be served from the LoS satellite and
experiences both LoS and NLoS interferences. If rLN < r ≤
rM(ϕ), then the user can be served from the NLoS satellite
and experiences only NLoS interferences.

When H ≤ r ≤ rLN, the typical user is associated with the
LoS satellite and its received SINR is given by

SINR =
G(ϕ)P |h0|2L0R

−αL
0

I1
, (15)

where I1 = N0W +
∑

xl∈ΦM,L\x0
G(ϕ)P |hl|2L0R

−αL

l +∑
xl∈ΦM,N

G(ϕ)P |hl|2L0R
−αN

l . When rLN < r ≤ rM(ϕ),
the typical user can be served from the NLoS satellite and its
received SINR can be expressed as

SINR =
G(ϕ)P |h0|2L0R

−αN
0

I2
, (16)

where I2 = N0W +
∑

xl∈ΦM,N\x0
G(ϕ)P |hl|2L0R

−αN

l .
Theorem 1: When the typical user is associated with the

nearest satellite among the beam coverage satellites, the
coverage probability is given by

Pc(τ) = PV,M

(
PM,L
c (τ)AM,L + PM,N

c (τ)AM,N

)
, (17)

where

PM,L
c (τ)=

∫ rLN

H

mL−1∑
k=0

(−s)k

k!

dk

dsk
LI1(s|r)

∣∣∣
s=sL

fM,L
R0

(r)dr,

(18)
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PM,N
c (τ)=

∫ rM(ϕ)

rLN

mN−1∑
k=0

(−s)k

k!

dk

dsk
LI2(s|r)

∣∣∣
s=sN

fM,N
R0

(r)dr,

(19)

where

LI1(s|r) = e
−sN0W−λ2π(Re+H)2

{∫ φLN
φ(r)

ψL(φ) sinφdφ
}

× e
−λ2π(Re+H)2

{∫ φ(rM(ϕ))

φLN
ψN(φ) sinφdφ

}
, (20)

LI2(s|r)=e
−sN0W−λ2π(Re+H)2

{∫ φ(rM(ϕ))

φ(r)
ψN(φ) sinφdφ

}
, (21)

where ψζ(φ) = 1 − (mζ/(sPL0G(ϕ)v(φ)−αζ +mζ))
mζ

and sζ = mζτr
αζ (G(ϕ)PL0)

−1 for ζ ∈ {L,N},
φ(rM(ϕ)) = arccos

(
1− (rM(ϕ))2−H2

2Re(Re+H)

)
, and v(φ) =√

R2
e + (Re +H)2 − 2Re(Re +H) cosφ.
Proof: We omit the proof due to the limited space.

Note that as ϕ increases, the first product term in (17)
increases due to the improved beam coverage. However,
the integration range of the conditional Laplace transform
of aggregated interference plus noise also increases. This
implies that more larger number of satellites interferes with
the reference user. The opposite result occurs if ϕ decreases.
Therefore, the optimal control of beamwidth is necessary to
efficiently balance the network interference and the beam
coverage. Unfortunately, (17) is non-convex function with the
very complicated form, the optimal beamwidth can be found
by relying on the brute-force searching.

2) Scenario 2: rM(ϕ) < rLN: When H ≤ r ≤ rM(ϕ),
the typical user can be served from the LoS satellite and its
received SINR can be expressed as

SINR =
G(ϕ)P |h0|2L0R

−αL
0

I3
, (22)

where I3 = N0W +
∑

xl∈ΦM,L\x0
G(ϕ)P |hl|2L0R

−αL

l .
Theorem 2: When the typical user is associated with the

nearest satellite among the beam coverage satellites, the
coverage probability is given by

Pc(τ) = PV,M · PM,L
c (τ), (23)

where

PM,L
c (τ)=

∫ rM(ϕ)

H

mL−1∑
k=0

(−s)k

k!

dk

dsk
LI3(s|r)

∣∣∣
s=sL

gM,L
R0

(r) dr,

(24)

LI3(s|r)=e
−sN0W−λ2π(Re+H)2

{∫ φ(rM(ϕ))

φ(r)
ψL(φ) sinφdφ

}
, (25)

where ψL(φ) = 1 − (mL/(sPL0G(ϕ)v(φ)−αL +mL))
mL ,

φ(rM(ϕ)) = arccos
(
1− (rM(ϕ))2−H2

2Re(Re+H)

)
, and gM,L

R0
(r) is given

in (12).
Proof: We omit the proof due to the limited space.

IV. NUMERICAL RESULTS

In this section, we provide some numerical examples to
verify our analytical results in the previous Section and pro-
vide some useful design insights. We investigate how various
system parameters such as Nakagami-m fading parameters
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Fig. 2: Comparison of the coverage probabilities versus τ (dB)
for various mL and mN.

and satellite density affect the performance and the optimal
beamwidth. Unless otherwise stated, the baseline simulation
environment is set as follows: P = 45 (dBm), H = 600 (km),
λ = 3.3×10−6 (units/km2), N0 = -174 (dBm), fc = 2 (GHz),
W = 20 (MHz), rLN = 1, 000 (km), αL = 2, αN = 2.3,
mL = 3, and mN = 2, ϕ = 2

3π. In this setting, the average
number of satellites over the surface of Earth is nearly 2,000
and rM(ϕ) = 1, 450 (km).

Fig. 2 compares the coverage probability in (17) with its
Monte-Carlo simulation versus τ (dB) for various mL and
mN. This figure verifies that our analytical results are well
matched to Monte-Carlo simulation results. Fig. 2 shows
that the coverage probabilities when (mL,mN) = (3,1) and
(mL,mN) = (3,2) are almost the same, while they have some
gaps when (mL,mN) = (3,1) and (mL,mN) = (1,1). This
implies that the fading parameter for LoS link dominantly
affect the coverage probability compared to that for NLoS
link.

Fig. 3 compares the coverage probabilities versus ϕ (rad)
for various λ (units/km2). Fig. 3 validates that the opti-
mal control of the beamwidth for λ maximizes the cov-
erage probability. Interestingly, the optimal beamwidth de-
creases as λ increases. This is because as λ increases, the
beamwidth coverage is sufficiently high enough even with
narrow beamwidth and thus reducing the interference with the
narrow beamwidth is more beneficial. On the other hand, for
smaller λ, the beamdwidth should be more larger to guarantee
the beamwidth coverage event.

Fig. 4 compares the coverage probabilities between PPP
model and deterministic model [12] versus τ (dB) for var-
ious λ (units/km2). The point set of deterministic model is
regularly structured with the same distance, while the point
set of the PPP model is uniformly distributed. Obviously, the
coverage probability of PPP model is lowerbound compared to
that of deterministic model. As λ increases, the performance
gap between two models becomes negligible. For small λ,
there exists a large gap between two models for small τ .
This is because the probability of beam contact in PPP model
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becomes more smaller than that in deterministic model for
relatively small number of satellites.

V. CONCLUSION

We have studied the coverage probabilities of LEO satellite
communication systems with a directional beamforming with
stochastic geometry. Our analytical framework have provided
some useful design insights for how to optimally control the
beamwidth to maximize the performance of the LEO satellite
systems. We have demonstrated that the optimal control of
beamwidth can maximize the performances and investigated
how various system parameters, such as satellite density and
altitude affect the optimal beamwidth.

ACKNOWLEDGMENTS

This work was supported in part by the Agency for De-
fense Development, in part by the ICAN(ICT Challenge and
Advanced Network of HRD) program (IITP-2023-RS-2022-
00156326) supervised by the IITP(Institute of Information &

Communications Technology Planning & Evaluation), and in
part by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-
2021R1F1A1050633).

REFERENCES

[1] A. Ganz, Y. Gong, and B. Li, “Performance study of low Earthor-
bit satellite systems,” IEEE Trans. Commun., vol. 42, no. 234, pp.
1866–1871, Feb. 1994.

[2] S. H. Chae, J.-P. Hong, and W. Choi, “Optimal access in ofdma multi-rat
cellular networks with stochastic geometry: Can a single rat be better?,”
IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 4778-4789, Jul. 2016.

[3] S. H. Chae, T. Q. S. Quek, and W. Choi, “Content placement for wireless
cooperative caching helpers: A tradeoff between cooperative gain and
content diversity gain,” IEEE Trans. Wireless Commun., vol. 16, no. 10,
pp. 6795-6807, Oct. 2017.

[4] S. H. Chae, T. Kim, and J.-P. Hong, “Distributed multi-radio access
control for decentralized ofdma multi-rat wireless networks,” IEEE
Commun. Letters, vol. 25, no. 4, pp. 1303-1307, Apr. 2021.

[5] S. H. Chae and W. Choi, “Optimal power allocation for artificial noise
in a poisson interference field,” IEEE Commun. Letters, vol. 20, no. 8,
pp. 1671-1674, Aug. 2016.

[6] A. Talgat, M. A. Kishk, and M.-S. Alouini, “Stochastic geometry-based
analysis of LEO satellite communication systems,” IEEE Commun.
Letters, vol. 25, no. 8, pp. 2458-2462, Oct. 2020.

[7] D.-H. Jung, J.-G. Ryu, W.-J. Byun, and J. Choi, “Performance analysis
of satellite communication system under the Shadowed-Rician fading:
A stochastic geometry approach,” IEEE Trans. Commun., vol. 70, no.
4, pp. 2707-2721, Apr. 2022.

[8] N. Okati, T. Riihonen, D. Korpi, I. Angervuori, and R. Wichman,
“Downlink coverage and rate analysis of low earth orbit satellite
constellations using stochastic geometry,” IEEE Trans. Commun., vol.
68, no. 8, pp. 5120-5134, Aug. 2020.

[9] J. Park, J. Choi, and N. Lee, “A tractable approach to coverage analysis
in downlink satellite networks,” IEEE Trans. Wireless Commun, vol. 22,
no. 2, pp. 793-807, Feb. 2023.

[10] N. Okati and T. Riihonen, “Nonhomogeneous stochastic geometry
analysis of massive LEO communication constellations,” IEEE Trans.
Commun., vol. 70, no. 3, pp. 1848-1860, Mar. 2022.

[11] A. A.-Hourani, “Optimal satellite constellation altitude for maximal
coverage,” IEEE Wireless Communications Letters, vol. 10, no. 7, pp.
1444-1448, Jul. 2021.

[12] R. Wang, M. A. Kishk, and M.-S. Alouini, “Evaluating the accuracy of
stochastic geometry based models for LEO satellite networks analysis,”
IEEE Commun. Letters, vol. 26, no. 10, pp. 2440-2444, Oct. 2022.

[13] S. H. Chae and W. Choi, “Caching placement in stochastic wireless
caching helper networks: Channel selection diversity via caching,” IEEE
Trans. Wireless Commun., vol. 15, no. 10, pp. 6626-6637, Oct. 2016.

247
Authorized licensed use limited to: AJOU UNIVERSITY. Downloaded on March 07,2025 at 02:38:26 UTC from IEEE Xplore.  Restrictions apply. 


